Metamath Proof Explorer


Theorem opprqusplusg

Description: The group operation of the quotient of the opposite ring is the same as the group operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses opprqus.b B = Base R
opprqus.o O = opp r R
opprqus.q Q = R / 𝑠 R ~ QG I
opprqus.i φ I NrmSGrp R
opprqusplusg.e E = Base Q
opprqusplusg.x φ X E
opprqusplusg.y φ Y E
Assertion opprqusplusg φ X + opp r Q Y = X + O / 𝑠 O ~ QG I Y

Proof

Step Hyp Ref Expression
1 opprqus.b B = Base R
2 opprqus.o O = opp r R
3 opprqus.q Q = R / 𝑠 R ~ QG I
4 opprqus.i φ I NrmSGrp R
5 opprqusplusg.e E = Base Q
6 opprqusplusg.x φ X E
7 opprqusplusg.y φ Y E
8 eqid opp r Q = opp r Q
9 eqid + Q = + Q
10 8 9 oppradd + Q = + opp r Q
11 10 oveqi X + Q Y = X + opp r Q Y
12 4 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I I NrmSGrp R
13 simp-4r φ p B X = p R ~ QG I q B Y = q R ~ QG I p B
14 simplr φ p B X = p R ~ QG I q B Y = q R ~ QG I q B
15 eqid + R = + R
16 3 1 15 9 qusadd I NrmSGrp R p B q B p R ~ QG I + Q q R ~ QG I = p + R q R ~ QG I
17 12 13 14 16 syl3anc φ p B X = p R ~ QG I q B Y = q R ~ QG I p R ~ QG I + Q q R ~ QG I = p + R q R ~ QG I
18 simpllr φ p B X = p R ~ QG I q B Y = q R ~ QG I X = p R ~ QG I
19 simpr φ p B X = p R ~ QG I q B Y = q R ~ QG I Y = q R ~ QG I
20 18 19 oveq12d φ p B X = p R ~ QG I q B Y = q R ~ QG I X + Q Y = p R ~ QG I + Q q R ~ QG I
21 4 elfvexd φ R V
22 nsgsubg I NrmSGrp R I SubGrp R
23 1 subgss I SubGrp R I B
24 4 22 23 3syl φ I B
25 2 1 oppreqg R V I B R ~ QG I = O ~ QG I
26 21 24 25 syl2anc φ R ~ QG I = O ~ QG I
27 26 eceq2d φ p R ~ QG I = p O ~ QG I
28 26 eceq2d φ q R ~ QG I = q O ~ QG I
29 27 28 oveq12d φ p R ~ QG I + O / 𝑠 O ~ QG I q R ~ QG I = p O ~ QG I + O / 𝑠 O ~ QG I q O ~ QG I
30 29 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I p R ~ QG I + O / 𝑠 O ~ QG I q R ~ QG I = p O ~ QG I + O / 𝑠 O ~ QG I q O ~ QG I
31 2 opprnsg NrmSGrp R = NrmSGrp O
32 4 31 eleqtrdi φ I NrmSGrp O
33 32 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I I NrmSGrp O
34 13 1 eleqtrdi φ p B X = p R ~ QG I q B Y = q R ~ QG I p Base R
35 14 1 eleqtrdi φ p B X = p R ~ QG I q B Y = q R ~ QG I q Base R
36 eqid O / 𝑠 O ~ QG I = O / 𝑠 O ~ QG I
37 2 1 opprbas B = Base O
38 1 37 eqtr3i Base R = Base O
39 2 15 oppradd + R = + O
40 eqid + O / 𝑠 O ~ QG I = + O / 𝑠 O ~ QG I
41 36 38 39 40 qusadd I NrmSGrp O p Base R q Base R p O ~ QG I + O / 𝑠 O ~ QG I q O ~ QG I = p + R q O ~ QG I
42 33 34 35 41 syl3anc φ p B X = p R ~ QG I q B Y = q R ~ QG I p O ~ QG I + O / 𝑠 O ~ QG I q O ~ QG I = p + R q O ~ QG I
43 30 42 eqtrd φ p B X = p R ~ QG I q B Y = q R ~ QG I p R ~ QG I + O / 𝑠 O ~ QG I q R ~ QG I = p + R q O ~ QG I
44 18 19 oveq12d φ p B X = p R ~ QG I q B Y = q R ~ QG I X + O / 𝑠 O ~ QG I Y = p R ~ QG I + O / 𝑠 O ~ QG I q R ~ QG I
45 26 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I R ~ QG I = O ~ QG I
46 45 eceq2d φ p B X = p R ~ QG I q B Y = q R ~ QG I p + R q R ~ QG I = p + R q O ~ QG I
47 43 44 46 3eqtr4d φ p B X = p R ~ QG I q B Y = q R ~ QG I X + O / 𝑠 O ~ QG I Y = p + R q R ~ QG I
48 17 20 47 3eqtr4d φ p B X = p R ~ QG I q B Y = q R ~ QG I X + Q Y = X + O / 𝑠 O ~ QG I Y
49 3 a1i φ Q = R / 𝑠 R ~ QG I
50 1 a1i φ B = Base R
51 ovexd φ R ~ QG I V
52 49 50 51 21 qusbas φ B / R ~ QG I = Base Q
53 5 52 eqtr4id φ E = B / R ~ QG I
54 7 53 eleqtrd φ Y B / R ~ QG I
55 54 ad2antrr φ p B X = p R ~ QG I Y B / R ~ QG I
56 elqsi Y B / R ~ QG I q B Y = q R ~ QG I
57 55 56 syl φ p B X = p R ~ QG I q B Y = q R ~ QG I
58 48 57 r19.29a φ p B X = p R ~ QG I X + Q Y = X + O / 𝑠 O ~ QG I Y
59 6 53 eleqtrd φ X B / R ~ QG I
60 elqsi X B / R ~ QG I p B X = p R ~ QG I
61 59 60 syl φ p B X = p R ~ QG I
62 58 61 r19.29a φ X + Q Y = X + O / 𝑠 O ~ QG I Y
63 11 62 eqtr3id φ X + opp r Q Y = X + O / 𝑠 O ~ QG I Y