Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
|
2 |
|
opprqus.o |
|
3 |
|
opprqus.q |
|
4 |
|
opprqus.i |
|
5 |
|
opprqusplusg.e |
|
6 |
|
opprqusplusg.x |
|
7 |
|
opprqusplusg.y |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
8 9
|
oppradd |
|
11 |
10
|
oveqi |
|
12 |
4
|
ad4antr |
|
13 |
|
simp-4r |
|
14 |
|
simplr |
|
15 |
|
eqid |
|
16 |
3 1 15 9
|
qusadd |
|
17 |
12 13 14 16
|
syl3anc |
|
18 |
|
simpllr |
|
19 |
|
simpr |
|
20 |
18 19
|
oveq12d |
|
21 |
4
|
elfvexd |
|
22 |
|
nsgsubg |
|
23 |
1
|
subgss |
|
24 |
4 22 23
|
3syl |
|
25 |
2 1
|
oppreqg |
|
26 |
21 24 25
|
syl2anc |
|
27 |
26
|
eceq2d |
|
28 |
26
|
eceq2d |
|
29 |
27 28
|
oveq12d |
|
30 |
29
|
ad4antr |
|
31 |
2
|
opprnsg |
|
32 |
4 31
|
eleqtrdi |
|
33 |
32
|
ad4antr |
|
34 |
13 1
|
eleqtrdi |
|
35 |
14 1
|
eleqtrdi |
|
36 |
|
eqid |
|
37 |
2 1
|
opprbas |
|
38 |
1 37
|
eqtr3i |
|
39 |
2 15
|
oppradd |
|
40 |
|
eqid |
|
41 |
36 38 39 40
|
qusadd |
|
42 |
33 34 35 41
|
syl3anc |
|
43 |
30 42
|
eqtrd |
|
44 |
18 19
|
oveq12d |
|
45 |
26
|
ad4antr |
|
46 |
45
|
eceq2d |
|
47 |
43 44 46
|
3eqtr4d |
|
48 |
17 20 47
|
3eqtr4d |
|
49 |
3
|
a1i |
|
50 |
1
|
a1i |
|
51 |
|
ovexd |
|
52 |
49 50 51 21
|
qusbas |
|
53 |
5 52
|
eqtr4id |
|
54 |
7 53
|
eleqtrd |
|
55 |
54
|
ad2antrr |
|
56 |
|
elqsi |
|
57 |
55 56
|
syl |
|
58 |
48 57
|
r19.29a |
|
59 |
6 53
|
eleqtrd |
|
60 |
|
elqsi |
|
61 |
59 60
|
syl |
|
62 |
58 61
|
r19.29a |
|
63 |
11 62
|
eqtr3id |
|