Metamath Proof Explorer


Theorem opprring

Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypothesis opprbas.1 O = opp r R
Assertion opprring R Ring O Ring

Proof

Step Hyp Ref Expression
1 opprbas.1 O = opp r R
2 eqid Base R = Base R
3 1 2 opprbas Base R = Base O
4 3 a1i R Ring Base R = Base O
5 eqid + R = + R
6 1 5 oppradd + R = + O
7 6 a1i R Ring + R = + O
8 eqidd R Ring O = O
9 ringgrp R Ring R Grp
10 3 6 grpprop R Grp O Grp
11 9 10 sylib R Ring O Grp
12 eqid R = R
13 eqid O = O
14 2 12 1 13 opprmul x O y = y R x
15 2 12 ringcl R Ring y Base R x Base R y R x Base R
16 15 3com23 R Ring x Base R y Base R y R x Base R
17 14 16 eqeltrid R Ring x Base R y Base R x O y Base R
18 simpl R Ring x Base R y Base R z Base R R Ring
19 simpr3 R Ring x Base R y Base R z Base R z Base R
20 simpr2 R Ring x Base R y Base R z Base R y Base R
21 simpr1 R Ring x Base R y Base R z Base R x Base R
22 2 12 ringass R Ring z Base R y Base R x Base R z R y R x = z R y R x
23 18 19 20 21 22 syl13anc R Ring x Base R y Base R z Base R z R y R x = z R y R x
24 23 eqcomd R Ring x Base R y Base R z Base R z R y R x = z R y R x
25 14 oveq1i x O y O z = y R x O z
26 2 12 1 13 opprmul y R x O z = z R y R x
27 25 26 eqtri x O y O z = z R y R x
28 2 12 1 13 opprmul y O z = z R y
29 28 oveq2i x O y O z = x O z R y
30 2 12 1 13 opprmul x O z R y = z R y R x
31 29 30 eqtri x O y O z = z R y R x
32 24 27 31 3eqtr4g R Ring x Base R y Base R z Base R x O y O z = x O y O z
33 2 5 12 ringdir R Ring y Base R z Base R x Base R y + R z R x = y R x + R z R x
34 18 20 19 21 33 syl13anc R Ring x Base R y Base R z Base R y + R z R x = y R x + R z R x
35 2 12 1 13 opprmul x O y + R z = y + R z R x
36 2 12 1 13 opprmul x O z = z R x
37 14 36 oveq12i x O y + R x O z = y R x + R z R x
38 34 35 37 3eqtr4g R Ring x Base R y Base R z Base R x O y + R z = x O y + R x O z
39 2 5 12 ringdi R Ring z Base R x Base R y Base R z R x + R y = z R x + R z R y
40 18 19 21 20 39 syl13anc R Ring x Base R y Base R z Base R z R x + R y = z R x + R z R y
41 2 12 1 13 opprmul x + R y O z = z R x + R y
42 36 28 oveq12i x O z + R y O z = z R x + R z R y
43 40 41 42 3eqtr4g R Ring x Base R y Base R z Base R x + R y O z = x O z + R y O z
44 eqid 1 R = 1 R
45 2 44 ringidcl R Ring 1 R Base R
46 2 12 1 13 opprmul 1 R O x = x R 1 R
47 2 12 44 ringridm R Ring x Base R x R 1 R = x
48 46 47 eqtrid R Ring x Base R 1 R O x = x
49 2 12 1 13 opprmul x O 1 R = 1 R R x
50 2 12 44 ringlidm R Ring x Base R 1 R R x = x
51 49 50 eqtrid R Ring x Base R x O 1 R = x
52 4 7 8 11 17 32 38 43 45 48 51 isringd R Ring O Ring