Step |
Hyp |
Ref |
Expression |
1 |
|
opprbas.1 |
|
2 |
|
eqid |
|
3 |
1 2
|
opprbas |
|
4 |
3
|
a1i |
|
5 |
|
eqid |
|
6 |
1 5
|
oppradd |
|
7 |
6
|
a1i |
|
8 |
|
eqidd |
|
9 |
|
ringgrp |
|
10 |
3 6
|
grpprop |
|
11 |
9 10
|
sylib |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
2 12 1 13
|
opprmul |
|
15 |
2 12
|
ringcl |
|
16 |
15
|
3com23 |
|
17 |
14 16
|
eqeltrid |
|
18 |
|
simpl |
|
19 |
|
simpr3 |
|
20 |
|
simpr2 |
|
21 |
|
simpr1 |
|
22 |
2 12
|
ringass |
|
23 |
18 19 20 21 22
|
syl13anc |
|
24 |
23
|
eqcomd |
|
25 |
14
|
oveq1i |
|
26 |
2 12 1 13
|
opprmul |
|
27 |
25 26
|
eqtri |
|
28 |
2 12 1 13
|
opprmul |
|
29 |
28
|
oveq2i |
|
30 |
2 12 1 13
|
opprmul |
|
31 |
29 30
|
eqtri |
|
32 |
24 27 31
|
3eqtr4g |
|
33 |
2 5 12
|
ringdir |
|
34 |
18 20 19 21 33
|
syl13anc |
|
35 |
2 12 1 13
|
opprmul |
|
36 |
2 12 1 13
|
opprmul |
|
37 |
14 36
|
oveq12i |
|
38 |
34 35 37
|
3eqtr4g |
|
39 |
2 5 12
|
ringdi |
|
40 |
18 19 21 20 39
|
syl13anc |
|
41 |
2 12 1 13
|
opprmul |
|
42 |
36 28
|
oveq12i |
|
43 |
40 41 42
|
3eqtr4g |
|
44 |
|
eqid |
|
45 |
2 44
|
ringidcl |
|
46 |
2 12 1 13
|
opprmul |
|
47 |
2 12 44
|
ringridm |
|
48 |
46 47
|
eqtrid |
|
49 |
2 12 1 13
|
opprmul |
|
50 |
2 12 44
|
ringlidm |
|
51 |
49 50
|
eqtrid |
|
52 |
4 7 8 11 17 32 38 43 45 48 51
|
isringd |
|