Metamath Proof Explorer


Theorem opprrng

Description: An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis opprbas.1 O = opp r R
Assertion opprrng R Rng O Rng

Proof

Step Hyp Ref Expression
1 opprbas.1 O = opp r R
2 eqid Base R = Base R
3 1 2 opprbas Base R = Base O
4 3 a1i R Rng Base R = Base O
5 eqid + R = + R
6 1 5 oppradd + R = + O
7 6 a1i R Rng + R = + O
8 eqidd R Rng O = O
9 rngabl R Rng R Abel
10 3 6 ablprop R Abel O Abel
11 9 10 sylib R Rng O Abel
12 eqid R = R
13 eqid O = O
14 2 12 1 13 opprmul x O y = y R x
15 2 12 rngcl R Rng y Base R x Base R y R x Base R
16 15 3com23 R Rng x Base R y Base R y R x Base R
17 14 16 eqeltrid R Rng x Base R y Base R x O y Base R
18 simpl R Rng x Base R y Base R z Base R R Rng
19 simpr3 R Rng x Base R y Base R z Base R z Base R
20 simpr2 R Rng x Base R y Base R z Base R y Base R
21 simpr1 R Rng x Base R y Base R z Base R x Base R
22 2 12 rngass R Rng z Base R y Base R x Base R z R y R x = z R y R x
23 18 19 20 21 22 syl13anc R Rng x Base R y Base R z Base R z R y R x = z R y R x
24 23 eqcomd R Rng x Base R y Base R z Base R z R y R x = z R y R x
25 14 oveq1i x O y O z = y R x O z
26 2 12 1 13 opprmul y R x O z = z R y R x
27 25 26 eqtri x O y O z = z R y R x
28 2 12 1 13 opprmul y O z = z R y
29 28 oveq2i x O y O z = x O z R y
30 2 12 1 13 opprmul x O z R y = z R y R x
31 29 30 eqtri x O y O z = z R y R x
32 24 27 31 3eqtr4g R Rng x Base R y Base R z Base R x O y O z = x O y O z
33 2 5 12 rngdir R Rng y Base R z Base R x Base R y + R z R x = y R x + R z R x
34 18 20 19 21 33 syl13anc R Rng x Base R y Base R z Base R y + R z R x = y R x + R z R x
35 2 12 1 13 opprmul x O y + R z = y + R z R x
36 2 12 1 13 opprmul x O z = z R x
37 14 36 oveq12i x O y + R x O z = y R x + R z R x
38 34 35 37 3eqtr4g R Rng x Base R y Base R z Base R x O y + R z = x O y + R x O z
39 2 5 12 rngdi R Rng z Base R x Base R y Base R z R x + R y = z R x + R z R y
40 18 19 21 20 39 syl13anc R Rng x Base R y Base R z Base R z R x + R y = z R x + R z R y
41 2 12 1 13 opprmul x + R y O z = z R x + R y
42 36 28 oveq12i x O z + R y O z = z R x + R z R y
43 40 41 42 3eqtr4g R Rng x Base R y Base R z Base R x + R y O z = x O z + R y O z
44 4 7 8 11 17 32 38 43 isrngd R Rng O Rng