Metamath Proof Explorer


Theorem opprrngb

Description: A class is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng . (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis opprbas.1 O = opp r R
Assertion opprrngb R Rng O Rng

Proof

Step Hyp Ref Expression
1 opprbas.1 O = opp r R
2 1 opprrng R Rng O Rng
3 eqid opp r O = opp r O
4 3 opprrng O Rng opp r O Rng
5 eqidd Base R = Base R
6 eqid Base R = Base R
7 1 6 opprbas Base R = Base O
8 3 7 opprbas Base R = Base opp r O
9 8 a1i Base R = Base opp r O
10 eqid + R = + R
11 1 10 oppradd + R = + O
12 3 11 oppradd + R = + opp r O
13 12 oveqi x + R y = x + opp r O y
14 13 a1i x Base R y Base R x + R y = x + opp r O y
15 eqid O = O
16 eqid opp r O = opp r O
17 7 15 3 16 opprmul x opp r O y = y O x
18 eqid R = R
19 6 18 1 15 opprmul y O x = x R y
20 17 19 eqtr2i x R y = x opp r O y
21 20 a1i x Base R y Base R x R y = x opp r O y
22 5 9 14 21 rngpropd R Rng opp r O Rng
23 22 mptru R Rng opp r O Rng
24 4 23 sylibr O Rng R Rng
25 2 24 impbii R Rng O Rng