Metamath Proof Explorer


Theorem opprsubrg

Description: Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)

Ref Expression
Hypothesis opprsubrg.o O=opprR
Assertion opprsubrg SubRingR=SubRingO

Proof

Step Hyp Ref Expression
1 opprsubrg.o O=opprR
2 subrgrcl xSubRingRRRing
3 subrgrcl xSubRingOORing
4 1 opprringb RRingORing
5 3 4 sylibr xSubRingORRing
6 1 opprsubg SubGrpR=SubGrpO
7 6 a1i RRingSubGrpR=SubGrpO
8 7 eleq2d RRingxSubGrpRxSubGrpO
9 ralcom yxzxyRzxzxyxyRzx
10 eqid BaseR=BaseR
11 eqid R=R
12 eqid O=O
13 10 11 1 12 opprmul zOy=yRz
14 13 eleq1i zOyxyRzx
15 14 2ralbii zxyxzOyxzxyxyRzx
16 9 15 bitr4i yxzxyRzxzxyxzOyx
17 16 a1i RRingyxzxyRzxzxyxzOyx
18 8 17 3anbi13d RRingxSubGrpR1RxyxzxyRzxxSubGrpO1RxzxyxzOyx
19 eqid 1R=1R
20 10 19 11 issubrg2 RRingxSubRingRxSubGrpR1RxyxzxyRzx
21 1 10 opprbas BaseR=BaseO
22 1 19 oppr1 1R=1O
23 21 22 12 issubrg2 ORingxSubRingOxSubGrpO1RxzxyxzOyx
24 4 23 sylbi RRingxSubRingOxSubGrpO1RxzxyxzOyx
25 18 20 24 3bitr4d RRingxSubRingRxSubRingO
26 2 5 25 pm5.21nii xSubRingRxSubRingO
27 26 eqriv SubRingR=SubRingO