Metamath Proof Explorer


Theorem opprsubrng

Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis opprsubrng.o O = opp r R
Assertion opprsubrng SubRng R = SubRng O

Proof

Step Hyp Ref Expression
1 opprsubrng.o O = opp r R
2 subrngrcl x SubRng R R Rng
3 subrngrcl x SubRng O O Rng
4 1 opprrngb R Rng O Rng
5 3 4 sylibr x SubRng O R Rng
6 1 opprsubg SubGrp R = SubGrp O
7 6 a1i R Rng SubGrp R = SubGrp O
8 7 eleq2d R Rng x SubGrp R x SubGrp O
9 ralcom z x y x z R y x y x z x z R y x
10 eqid Base R = Base R
11 eqid R = R
12 eqid O = O
13 10 11 1 12 opprmul y O z = z R y
14 13 eleq1i y O z x z R y x
15 14 2ralbii y x z x y O z x y x z x z R y x
16 9 15 bitr4i z x y x z R y x y x z x y O z x
17 16 a1i R Rng z x y x z R y x y x z x y O z x
18 8 17 anbi12d R Rng x SubGrp R z x y x z R y x x SubGrp O y x z x y O z x
19 10 11 issubrng2 R Rng x SubRng R x SubGrp R z x y x z R y x
20 1 10 opprbas Base R = Base O
21 20 12 issubrng2 O Rng x SubRng O x SubGrp O y x z x y O z x
22 4 21 sylbi R Rng x SubRng O x SubGrp O y x z x y O z x
23 18 19 22 3bitr4d R Rng x SubRng R x SubRng O
24 2 5 23 pm5.21nii x SubRng R x SubRng O
25 24 eqriv SubRng R = SubRng O