Metamath Proof Explorer


Theorem opprsubrng

Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis opprsubrng.o O = opp r R
Assertion opprsubrng Could not format assertion : No typesetting found for |- ( SubRng ` R ) = ( SubRng ` O ) with typecode |-

Proof

Step Hyp Ref Expression
1 opprsubrng.o O = opp r R
2 subrngrcl Could not format ( x e. ( SubRng ` R ) -> R e. Rng ) : No typesetting found for |- ( x e. ( SubRng ` R ) -> R e. Rng ) with typecode |-
3 subrngrcl Could not format ( x e. ( SubRng ` O ) -> O e. Rng ) : No typesetting found for |- ( x e. ( SubRng ` O ) -> O e. Rng ) with typecode |-
4 1 opprrngb R Rng O Rng
5 3 4 sylibr Could not format ( x e. ( SubRng ` O ) -> R e. Rng ) : No typesetting found for |- ( x e. ( SubRng ` O ) -> R e. Rng ) with typecode |-
6 1 opprsubg SubGrp R = SubGrp O
7 6 a1i R Rng SubGrp R = SubGrp O
8 7 eleq2d R Rng x SubGrp R x SubGrp O
9 ralcom z x y x z R y x y x z x z R y x
10 eqid Base R = Base R
11 eqid R = R
12 eqid O = O
13 10 11 1 12 opprmul y O z = z R y
14 13 eleq1i y O z x z R y x
15 14 2ralbii y x z x y O z x y x z x z R y x
16 9 15 bitr4i z x y x z R y x y x z x y O z x
17 16 a1i R Rng z x y x z R y x y x z x y O z x
18 8 17 anbi12d R Rng x SubGrp R z x y x z R y x x SubGrp O y x z x y O z x
19 10 11 issubrng2 Could not format ( R e. Rng -> ( x e. ( SubRng ` R ) <-> ( x e. ( SubGrp ` R ) /\ A. z e. x A. y e. x ( z ( .r ` R ) y ) e. x ) ) ) : No typesetting found for |- ( R e. Rng -> ( x e. ( SubRng ` R ) <-> ( x e. ( SubGrp ` R ) /\ A. z e. x A. y e. x ( z ( .r ` R ) y ) e. x ) ) ) with typecode |-
20 1 10 opprbas Base R = Base O
21 20 12 issubrng2 Could not format ( O e. Rng -> ( x e. ( SubRng ` O ) <-> ( x e. ( SubGrp ` O ) /\ A. y e. x A. z e. x ( y ( .r ` O ) z ) e. x ) ) ) : No typesetting found for |- ( O e. Rng -> ( x e. ( SubRng ` O ) <-> ( x e. ( SubGrp ` O ) /\ A. y e. x A. z e. x ( y ( .r ` O ) z ) e. x ) ) ) with typecode |-
22 4 21 sylbi Could not format ( R e. Rng -> ( x e. ( SubRng ` O ) <-> ( x e. ( SubGrp ` O ) /\ A. y e. x A. z e. x ( y ( .r ` O ) z ) e. x ) ) ) : No typesetting found for |- ( R e. Rng -> ( x e. ( SubRng ` O ) <-> ( x e. ( SubGrp ` O ) /\ A. y e. x A. z e. x ( y ( .r ` O ) z ) e. x ) ) ) with typecode |-
23 18 19 22 3bitr4d Could not format ( R e. Rng -> ( x e. ( SubRng ` R ) <-> x e. ( SubRng ` O ) ) ) : No typesetting found for |- ( R e. Rng -> ( x e. ( SubRng ` R ) <-> x e. ( SubRng ` O ) ) ) with typecode |-
24 2 5 23 pm5.21nii Could not format ( x e. ( SubRng ` R ) <-> x e. ( SubRng ` O ) ) : No typesetting found for |- ( x e. ( SubRng ` R ) <-> x e. ( SubRng ` O ) ) with typecode |-
25 24 eqriv Could not format ( SubRng ` R ) = ( SubRng ` O ) : No typesetting found for |- ( SubRng ` R ) = ( SubRng ` O ) with typecode |-