Metamath Proof Explorer


Theorem opprunit

Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses opprunit.1 U = Unit R
opprunit.2 S = opp r R
Assertion opprunit U = Unit S

Proof

Step Hyp Ref Expression
1 opprunit.1 U = Unit R
2 opprunit.2 S = opp r R
3 eqid Base R = Base R
4 2 3 opprbas Base R = Base S
5 eqid S = S
6 eqid opp r S = opp r S
7 eqid opp r S = opp r S
8 4 5 6 7 opprmul y opp r S x = x S y
9 eqid R = R
10 3 9 2 5 opprmul x S y = y R x
11 8 10 eqtr2i y R x = y opp r S x
12 11 eqeq1i y R x = 1 R y opp r S x = 1 R
13 12 rexbii y Base R y R x = 1 R y Base R y opp r S x = 1 R
14 13 anbi2i x Base R y Base R y R x = 1 R x Base R y Base R y opp r S x = 1 R
15 eqid r R = r R
16 3 15 9 dvdsr x r R 1 R x Base R y Base R y R x = 1 R
17 6 4 opprbas Base R = Base opp r S
18 eqid r opp r S = r opp r S
19 17 18 7 dvdsr x r opp r S 1 R x Base R y Base R y opp r S x = 1 R
20 14 16 19 3bitr4i x r R 1 R x r opp r S 1 R
21 20 anbi2ci x r R 1 R x r S 1 R x r S 1 R x r opp r S 1 R
22 eqid 1 R = 1 R
23 eqid r S = r S
24 1 22 15 2 23 isunit x U x r R 1 R x r S 1 R
25 eqid Unit S = Unit S
26 2 22 oppr1 1 R = 1 S
27 25 26 23 6 18 isunit x Unit S x r S 1 R x r opp r S 1 R
28 21 24 27 3bitr4i x U x Unit S
29 28 eqriv U = Unit S