Metamath Proof Explorer


Theorem opprval

Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprval.1 B = Base R
opprval.2 · ˙ = R
opprval.3 O = opp r R
Assertion opprval O = R sSet ndx tpos · ˙

Proof

Step Hyp Ref Expression
1 opprval.1 B = Base R
2 opprval.2 · ˙ = R
3 opprval.3 O = opp r R
4 id x = R x = R
5 fveq2 x = R x = R
6 5 2 eqtr4di x = R x = · ˙
7 6 tposeqd x = R tpos x = tpos · ˙
8 7 opeq2d x = R ndx tpos x = ndx tpos · ˙
9 4 8 oveq12d x = R x sSet ndx tpos x = R sSet ndx tpos · ˙
10 df-oppr opp r = x V x sSet ndx tpos x
11 ovex R sSet ndx tpos · ˙ V
12 9 10 11 fvmpt R V opp r R = R sSet ndx tpos · ˙
13 fvprc ¬ R V opp r R =
14 reldmsets Rel dom sSet
15 14 ovprc1 ¬ R V R sSet ndx tpos · ˙ =
16 13 15 eqtr4d ¬ R V opp r R = R sSet ndx tpos · ˙
17 12 16 pm2.61i opp r R = R sSet ndx tpos · ˙
18 3 17 eqtri O = R sSet ndx tpos · ˙