Metamath Proof Explorer


Theorem opptgdim2

Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
oppcom.a φ A P
oppcom.b φ B P
oppcom.o φ A O B
Assertion opptgdim2 φ G Dim 𝒢 2

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 oppcom.a φ A P
9 oppcom.b φ B P
10 oppcom.o φ A O B
11 7 ad3antrrr φ x P y P D = x L y x y G 𝒢 Tarski
12 simpllr φ x P y P D = x L y x y x P
13 simplr φ x P y P D = x L y x y y P
14 8 ad3antrrr φ x P y P D = x L y x y A P
15 1 2 3 4 5 6 7 8 9 10 oppne1 φ ¬ A D
16 15 ad3antrrr φ x P y P D = x L y x y ¬ A D
17 simprl φ x P y P D = x L y x y D = x L y
18 16 17 neleqtrd φ x P y P D = x L y x y ¬ A x L y
19 simprr φ x P y P D = x L y x y x y
20 19 neneqd φ x P y P D = x L y x y ¬ x = y
21 ioran ¬ A x L y x = y ¬ A x L y ¬ x = y
22 18 20 21 sylanbrc φ x P y P D = x L y x y ¬ A x L y x = y
23 1 5 3 11 12 13 14 22 ncoltgdim2 φ x P y P D = x L y x y G Dim 𝒢 2
24 1 3 5 7 6 tgisline φ x P y P D = x L y x y
25 23 24 r19.29vva φ G Dim 𝒢 2