Metamath Proof Explorer


Theorem oprab2co

Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by David Abernethy, 23-Apr-2013)

Ref Expression
Hypotheses oprab2co.1 x A y B C R
oprab2co.2 x A y B D S
oprab2co.3 F = x A , y B C D
oprab2co.4 G = x A , y B C M D
Assertion oprab2co M Fn R × S G = M F

Proof

Step Hyp Ref Expression
1 oprab2co.1 x A y B C R
2 oprab2co.2 x A y B D S
3 oprab2co.3 F = x A , y B C D
4 oprab2co.4 G = x A , y B C M D
5 1 2 opelxpd x A y B C D R × S
6 df-ov C M D = M C D
7 6 a1i x A y B C M D = M C D
8 7 mpoeq3ia x A , y B C M D = x A , y B M C D
9 4 8 eqtri G = x A , y B M C D
10 5 3 9 oprabco M Fn R × S G = M F