Metamath Proof Explorer


Theorem oprabbidv

Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004)

Ref Expression
Hypothesis oprabbidv.1 φ ψ χ
Assertion oprabbidv φ x y z | ψ = x y z | χ

Proof

Step Hyp Ref Expression
1 oprabbidv.1 φ ψ χ
2 nfv x φ
3 nfv y φ
4 nfv z φ
5 2 3 4 1 oprabbid φ x y z | ψ = x y z | χ