Metamath Proof Explorer


Theorem oprabbii

Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypothesis oprabbii.1 φ ψ
Assertion oprabbii x y z | φ = x y z | ψ

Proof

Step Hyp Ref Expression
1 oprabbii.1 φ ψ
2 eqid w = w
3 1 a1i w = w φ ψ
4 3 oprabbidv w = w x y z | φ = x y z | ψ
5 2 4 ax-mp x y z | φ = x y z | ψ