Metamath Proof Explorer


Theorem oprabco

Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 26-Sep-2015)

Ref Expression
Hypotheses oprabco.1 x A y B C D
oprabco.2 F = x A , y B C
oprabco.3 G = x A , y B H C
Assertion oprabco H Fn D G = H F

Proof

Step Hyp Ref Expression
1 oprabco.1 x A y B C D
2 oprabco.2 F = x A , y B C
3 oprabco.3 G = x A , y B H C
4 1 adantl H Fn D x A y B C D
5 2 a1i H Fn D F = x A , y B C
6 dffn5 H Fn D H = z D H z
7 6 biimpi H Fn D H = z D H z
8 fveq2 z = C H z = H C
9 4 5 7 8 fmpoco H Fn D H F = x A , y B H C
10 3 9 eqtr4id H Fn D G = H F