| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
|
| 2 |
|
opex |
|
| 3 |
|
vex |
|
| 4 |
2 3
|
eqvinop |
|
| 5 |
4
|
biimpi |
|
| 6 |
|
eqeq1 |
|
| 7 |
|
vex |
|
| 8 |
|
vex |
|
| 9 |
7 8
|
opth1 |
|
| 10 |
6 9
|
biimtrdi |
|
| 11 |
|
vex |
|
| 12 |
|
vex |
|
| 13 |
11 12
|
eqvinop |
|
| 14 |
|
opeq1 |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
11 12 3
|
otth2 |
|
| 17 |
|
euequ |
|
| 18 |
|
eupick |
|
| 19 |
17 18
|
mpan |
|
| 20 |
|
euequ |
|
| 21 |
|
eupick |
|
| 22 |
20 21
|
mpan |
|
| 23 |
|
euequ |
|
| 24 |
|
eupick |
|
| 25 |
23 24
|
mpan |
|
| 26 |
22 25
|
syl6 |
|
| 27 |
19 26
|
syl6 |
|
| 28 |
27
|
3impd |
|
| 29 |
16 28
|
biimtrid |
|
| 30 |
|
df-3an |
|
| 31 |
16 30
|
bitri |
|
| 32 |
31
|
anbi1i |
|
| 33 |
|
anass |
|
| 34 |
|
anass |
|
| 35 |
32 33 34
|
3bitri |
|
| 36 |
35
|
3exbii |
|
| 37 |
|
nfcvf2 |
|
| 38 |
|
nfcvd |
|
| 39 |
37 38
|
nfeqd |
|
| 40 |
39
|
exdistrf |
|
| 41 |
40
|
eximi |
|
| 42 |
|
excom |
|
| 43 |
|
excom |
|
| 44 |
41 42 43
|
3imtr4i |
|
| 45 |
|
nfcvf2 |
|
| 46 |
|
nfcvd |
|
| 47 |
45 46
|
nfeqd |
|
| 48 |
47
|
exdistrf |
|
| 49 |
|
nfcvf2 |
|
| 50 |
|
nfcvd |
|
| 51 |
49 50
|
nfeqd |
|
| 52 |
51
|
exdistrf |
|
| 53 |
52
|
anim2i |
|
| 54 |
53
|
eximi |
|
| 55 |
44 48 54
|
3syl |
|
| 56 |
36 55
|
sylbi |
|
| 57 |
29 56
|
syl11 |
|
| 58 |
|
eqeq1 |
|
| 59 |
|
eqcom |
|
| 60 |
58 59
|
bitrdi |
|
| 61 |
60
|
anbi1d |
|
| 62 |
61
|
3exbidv |
|
| 63 |
62
|
imbi1d |
|
| 64 |
60 63
|
imbi12d |
|
| 65 |
57 64
|
mpbiri |
|
| 66 |
15 65
|
biimtrdi |
|
| 67 |
66
|
adantr |
|
| 68 |
67
|
exlimivv |
|
| 69 |
13 68
|
sylbi |
|
| 70 |
69
|
com3l |
|
| 71 |
10 70
|
mpdd |
|
| 72 |
71
|
adantr |
|
| 73 |
72
|
exlimivv |
|
| 74 |
5 73
|
mpcom |
|
| 75 |
|
19.8a |
|
| 76 |
|
19.8a |
|
| 77 |
|
19.8a |
|
| 78 |
75 76 77
|
3syl |
|
| 79 |
78
|
ex |
|
| 80 |
74 79
|
impbid |
|
| 81 |
|
df-oprab |
|
| 82 |
1 80 81
|
elab2 |
|