Metamath Proof Explorer


Theorem oprabidw

Description: The law of concretion. Special case of Theorem 9.5 of Quine p. 61. Version of oprabid with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 20-Mar-2013) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion oprabidw x y z x y z | φ φ

Proof

Step Hyp Ref Expression
1 opex x y z V
2 opex x y V
3 vex z V
4 2 3 eqvinop w = x y z a t w = a t a t = x y z
5 4 biimpi w = x y z a t w = a t a t = x y z
6 eqeq1 w = a t w = x y z a t = x y z
7 vex a V
8 vex t V
9 7 8 opth1 a t = x y z a = x y
10 6 9 syl6bi w = a t w = x y z a = x y
11 vex x V
12 vex y V
13 11 12 eqvinop a = x y r s a = r s r s = x y
14 opeq1 a = r s a t = r s t
15 14 eqeq2d a = r s w = a t w = r s t
16 11 12 3 otth2 x y z = r s t x = r y = s z = t
17 euequ ∃! x x = r
18 eupick ∃! x x = r x x = r y y = s z z = t φ x = r y y = s z z = t φ
19 17 18 mpan x x = r y y = s z z = t φ x = r y y = s z z = t φ
20 euequ ∃! y y = s
21 eupick ∃! y y = s y y = s z z = t φ y = s z z = t φ
22 20 21 mpan y y = s z z = t φ y = s z z = t φ
23 euequ ∃! z z = t
24 eupick ∃! z z = t z z = t φ z = t φ
25 23 24 mpan z z = t φ z = t φ
26 22 25 syl6 y y = s z z = t φ y = s z = t φ
27 19 26 syl6 x x = r y y = s z z = t φ x = r y = s z = t φ
28 27 3impd x x = r y y = s z z = t φ x = r y = s z = t φ
29 16 28 syl5bi x x = r y y = s z z = t φ x y z = r s t φ
30 df-3an x = r y = s z = t x = r y = s z = t
31 16 30 bitri x y z = r s t x = r y = s z = t
32 31 anbi1i x y z = r s t φ x = r y = s z = t φ
33 anass x = r y = s z = t φ x = r y = s z = t φ
34 anass x = r y = s z = t φ x = r y = s z = t φ
35 32 33 34 3bitri x y z = r s t φ x = r y = s z = t φ
36 35 3exbii x y z x y z = r s t φ x y z x = r y = s z = t φ
37 nfe1 x x x = r z y = s z = t φ
38 19.8a y = s z = t φ z y = s z = t φ
39 38 anim2i x = r y = s z = t φ x = r z y = s z = t φ
40 39 eximi z x = r y = s z = t φ z x = r z y = s z = t φ
41 biidd x x = z x = r z y = s z = t φ x = r z y = s z = t φ
42 41 drex1v x x = z x x = r z y = s z = t φ z x = r z y = s z = t φ
43 40 42 syl5ibr x x = z z x = r y = s z = t φ x x = r z y = s z = t φ
44 19.40 z x = r y = s z = t φ z x = r z y = s z = t φ
45 nfvd ¬ x x = z z x = r
46 45 19.9d ¬ x x = z z x = r x = r
47 46 anim1d ¬ x x = z z x = r z y = s z = t φ x = r z y = s z = t φ
48 19.8a x = r z y = s z = t φ x x = r z y = s z = t φ
49 44 47 48 syl56 ¬ x x = z z x = r y = s z = t φ x x = r z y = s z = t φ
50 43 49 pm2.61i z x = r y = s z = t φ x x = r z y = s z = t φ
51 37 50 exlimi x z x = r y = s z = t φ x x = r z y = s z = t φ
52 51 eximi y x z x = r y = s z = t φ y x x = r z y = s z = t φ
53 excom x y z x = r y = s z = t φ y x z x = r y = s z = t φ
54 excom x y x = r z y = s z = t φ y x x = r z y = s z = t φ
55 52 53 54 3imtr4i x y z x = r y = s z = t φ x y x = r z y = s z = t φ
56 nfe1 x x x = r y z y = s z = t φ
57 19.8a z y = s z = t φ y z y = s z = t φ
58 57 anim2i x = r z y = s z = t φ x = r y z y = s z = t φ
59 58 eximi y x = r z y = s z = t φ y x = r y z y = s z = t φ
60 biidd x x = y x = r y z y = s z = t φ x = r y z y = s z = t φ
61 60 drex1v x x = y x x = r y z y = s z = t φ y x = r y z y = s z = t φ
62 59 61 syl5ibr x x = y y x = r z y = s z = t φ x x = r y z y = s z = t φ
63 19.40 y x = r z y = s z = t φ y x = r y z y = s z = t φ
64 nfvd ¬ x x = y y x = r
65 64 19.9d ¬ x x = y y x = r x = r
66 65 anim1d ¬ x x = y y x = r y z y = s z = t φ x = r y z y = s z = t φ
67 19.8a x = r y z y = s z = t φ x x = r y z y = s z = t φ
68 63 66 67 syl56 ¬ x x = y y x = r z y = s z = t φ x x = r y z y = s z = t φ
69 62 68 pm2.61i y x = r z y = s z = t φ x x = r y z y = s z = t φ
70 56 69 exlimi x y x = r z y = s z = t φ x x = r y z y = s z = t φ
71 nfe1 y y y = s z z = t φ
72 19.8a z = t φ z z = t φ
73 72 anim2i y = s z = t φ y = s z z = t φ
74 73 eximi z y = s z = t φ z y = s z z = t φ
75 biidd y y = z y = s z z = t φ y = s z z = t φ
76 75 drex1v y y = z y y = s z z = t φ z y = s z z = t φ
77 74 76 syl5ibr y y = z z y = s z = t φ y y = s z z = t φ
78 19.40 z y = s z = t φ z y = s z z = t φ
79 nfvd ¬ y y = z z y = s
80 79 19.9d ¬ y y = z z y = s y = s
81 80 anim1d ¬ y y = z z y = s z z = t φ y = s z z = t φ
82 19.8a y = s z z = t φ y y = s z z = t φ
83 78 81 82 syl56 ¬ y y = z z y = s z = t φ y y = s z z = t φ
84 77 83 pm2.61i z y = s z = t φ y y = s z z = t φ
85 71 84 exlimi y z y = s z = t φ y y = s z z = t φ
86 85 anim2i x = r y z y = s z = t φ x = r y y = s z z = t φ
87 86 eximi x x = r y z y = s z = t φ x x = r y y = s z z = t φ
88 55 70 87 3syl x y z x = r y = s z = t φ x x = r y y = s z z = t φ
89 36 88 sylbi x y z x y z = r s t φ x x = r y y = s z z = t φ
90 29 89 syl11 x y z = r s t x y z x y z = r s t φ φ
91 eqeq1 w = r s t w = x y z r s t = x y z
92 eqcom r s t = x y z x y z = r s t
93 91 92 bitrdi w = r s t w = x y z x y z = r s t
94 93 anbi1d w = r s t w = x y z φ x y z = r s t φ
95 94 3exbidv w = r s t x y z w = x y z φ x y z x y z = r s t φ
96 95 imbi1d w = r s t x y z w = x y z φ φ x y z x y z = r s t φ φ
97 93 96 imbi12d w = r s t w = x y z x y z w = x y z φ φ x y z = r s t x y z x y z = r s t φ φ
98 90 97 mpbiri w = r s t w = x y z x y z w = x y z φ φ
99 15 98 syl6bi a = r s w = a t w = x y z x y z w = x y z φ φ
100 99 adantr a = r s r s = x y w = a t w = x y z x y z w = x y z φ φ
101 100 exlimivv r s a = r s r s = x y w = a t w = x y z x y z w = x y z φ φ
102 13 101 sylbi a = x y w = a t w = x y z x y z w = x y z φ φ
103 102 com3l w = a t w = x y z a = x y x y z w = x y z φ φ
104 10 103 mpdd w = a t w = x y z x y z w = x y z φ φ
105 104 adantr w = a t a t = x y z w = x y z x y z w = x y z φ φ
106 105 exlimivv a t w = a t a t = x y z w = x y z x y z w = x y z φ φ
107 5 106 mpcom w = x y z x y z w = x y z φ φ
108 19.8a w = x y z φ z w = x y z φ
109 19.8a z w = x y z φ y z w = x y z φ
110 19.8a y z w = x y z φ x y z w = x y z φ
111 108 109 110 3syl w = x y z φ x y z w = x y z φ
112 111 ex w = x y z φ x y z w = x y z φ
113 107 112 impbid w = x y z x y z w = x y z φ φ
114 df-oprab x y z | φ = w | x y z w = x y z φ
115 1 113 114 elab2 x y z x y z | φ φ