Metamath Proof Explorer


Theorem oprabss

Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006)

Ref Expression
Assertion oprabss x y z | φ V × V × V

Proof

Step Hyp Ref Expression
1 reloprab Rel x y z | φ
2 relssdmrn Rel x y z | φ x y z | φ dom x y z | φ × ran x y z | φ
3 1 2 ax-mp x y z | φ dom x y z | φ × ran x y z | φ
4 reldmoprab Rel dom x y z | φ
5 df-rel Rel dom x y z | φ dom x y z | φ V × V
6 4 5 mpbi dom x y z | φ V × V
7 ssv ran x y z | φ V
8 xpss12 dom x y z | φ V × V ran x y z | φ V dom x y z | φ × ran x y z | φ V × V × V
9 6 7 8 mp2an dom x y z | φ × ran x y z | φ V × V × V
10 3 9 sstri x y z | φ V × V × V