Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
oprabss
Next ⟩
eloprabga
Metamath Proof Explorer
Ascii
Unicode
Theorem
oprabss
Description:
Structure of an operation class abstraction.
(Contributed by
NM
, 28-Nov-2006)
Ref
Expression
Assertion
oprabss
⊢
x
y
z
|
φ
⊆
V
×
V
×
V
Proof
Step
Hyp
Ref
Expression
1
reloprab
⊢
Rel
⁡
x
y
z
|
φ
2
relssdmrn
⊢
Rel
⁡
x
y
z
|
φ
→
x
y
z
|
φ
⊆
dom
⁡
x
y
z
|
φ
×
ran
⁡
x
y
z
|
φ
3
1
2
ax-mp
⊢
x
y
z
|
φ
⊆
dom
⁡
x
y
z
|
φ
×
ran
⁡
x
y
z
|
φ
4
reldmoprab
⊢
Rel
⁡
dom
⁡
x
y
z
|
φ
5
df-rel
⊢
Rel
⁡
dom
⁡
x
y
z
|
φ
↔
dom
⁡
x
y
z
|
φ
⊆
V
×
V
6
4
5
mpbi
⊢
dom
⁡
x
y
z
|
φ
⊆
V
×
V
7
ssv
⊢
ran
⁡
x
y
z
|
φ
⊆
V
8
xpss12
⊢
dom
⁡
x
y
z
|
φ
⊆
V
×
V
∧
ran
⁡
x
y
z
|
φ
⊆
V
→
dom
⁡
x
y
z
|
φ
×
ran
⁡
x
y
z
|
φ
⊆
V
×
V
×
V
9
6
7
8
mp2an
⊢
dom
⁡
x
y
z
|
φ
×
ran
⁡
x
y
z
|
φ
⊆
V
×
V
×
V
10
3
9
sstri
⊢
x
y
z
|
φ
⊆
V
×
V
×
V