Metamath Proof Explorer


Theorem opreu2reu

Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023) (Revised by AV, 2-Jul-2023)

Ref Expression
Hypothesis opreu2reurex.a p = a b φ χ
Assertion opreu2reu ∃! p A × B φ ∃! a A ∃! b B χ

Proof

Step Hyp Ref Expression
1 opreu2reurex.a p = a b φ χ
2 1 opreu2reurex ∃! p A × B φ ∃! a A b B χ ∃! b B a A χ
3 2rexreu ∃! a A b B χ ∃! b B a A χ ∃! a A ∃! b B χ
4 2 3 sylbi ∃! p A × B φ ∃! a A ∃! b B χ