Metamath Proof Explorer


Theorem opreu2reurex

Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023) (Revised by AV, 1-Jul-2023)

Ref Expression
Hypothesis opreu2reurex.a p = a b φ χ
Assertion opreu2reurex ∃! p A × B φ ∃! a A b B χ ∃! b B a A χ

Proof

Step Hyp Ref Expression
1 opreu2reurex.a p = a b φ χ
2 eqcom x y = a b a b = x y
3 vex a V
4 vex b V
5 3 4 opth a b = x y a = x b = y
6 2 5 bitri x y = a b a = x b = y
7 6 imbi2i χ x y = a b χ a = x b = y
8 7 a1i x A y B a A b B χ x y = a b χ a = x b = y
9 8 2ralbidva x A y B a A b B χ x y = a b a A b B χ a = x b = y
10 9 2rexbiia x A y B a A b B χ x y = a b x A y B a A b B χ a = x b = y
11 10 anbi2i a A b B χ x A y B a A b B χ x y = a b a A b B χ x A y B a A b B χ a = x b = y
12 1 reu3op ∃! p A × B φ a A b B χ x A y B a A b B χ x y = a b
13 2reu4 ∃! a A b B χ ∃! b B a A χ a A b B χ x A y B a A b B χ a = x b = y
14 11 12 13 3bitr4i ∃! p A × B φ ∃! a A b B χ ∃! b B a A χ