Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
oprssdm
Next ⟩
nssdmovg
Metamath Proof Explorer
Ascii
Unicode
Theorem
oprssdm
Description:
Domain of closure of an operation.
(Contributed by
NM
, 24-Aug-1995)
Ref
Expression
Hypotheses
oprssdm.1
⊢
¬
∅
∈
S
oprssdm.2
⊢
x
∈
S
∧
y
∈
S
→
x
F
y
∈
S
Assertion
oprssdm
⊢
S
×
S
⊆
dom
⁡
F
Proof
Step
Hyp
Ref
Expression
1
oprssdm.1
⊢
¬
∅
∈
S
2
oprssdm.2
⊢
x
∈
S
∧
y
∈
S
→
x
F
y
∈
S
3
relxp
⊢
Rel
⁡
S
×
S
4
opelxp
⊢
x
y
∈
S
×
S
↔
x
∈
S
∧
y
∈
S
5
df-ov
⊢
x
F
y
=
F
⁡
x
y
6
5
2
eqeltrrid
⊢
x
∈
S
∧
y
∈
S
→
F
⁡
x
y
∈
S
7
ndmfv
⊢
¬
x
y
∈
dom
⁡
F
→
F
⁡
x
y
=
∅
8
7
eleq1d
⊢
¬
x
y
∈
dom
⁡
F
→
F
⁡
x
y
∈
S
↔
∅
∈
S
9
1
8
mtbiri
⊢
¬
x
y
∈
dom
⁡
F
→
¬
F
⁡
x
y
∈
S
10
9
con4i
⊢
F
⁡
x
y
∈
S
→
x
y
∈
dom
⁡
F
11
6
10
syl
⊢
x
∈
S
∧
y
∈
S
→
x
y
∈
dom
⁡
F
12
4
11
sylbi
⊢
x
y
∈
S
×
S
→
x
y
∈
dom
⁡
F
13
3
12
relssi
⊢
S
×
S
⊆
dom
⁡
F