Metamath Proof Explorer


Theorem oprssov

Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007)

Ref Expression
Assertion oprssov Fun F G Fn C × D G F A C B D A F B = A G B

Proof

Step Hyp Ref Expression
1 ovres A C B D A F C × D B = A F B
2 1 adantl Fun F G Fn C × D G F A C B D A F C × D B = A F B
3 fndm G Fn C × D dom G = C × D
4 3 reseq2d G Fn C × D F dom G = F C × D
5 4 3ad2ant2 Fun F G Fn C × D G F F dom G = F C × D
6 funssres Fun F G F F dom G = G
7 6 3adant2 Fun F G Fn C × D G F F dom G = G
8 5 7 eqtr3d Fun F G Fn C × D G F F C × D = G
9 8 oveqd Fun F G Fn C × D G F A F C × D B = A G B
10 9 adantr Fun F G Fn C × D G F A C B D A F C × D B = A G B
11 2 10 eqtr3d Fun F G Fn C × D G F A C B D A F B = A G B