Metamath Proof Explorer
Description: Zero in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
opsr0.s |
|
|
|
opsr0.o |
|
|
|
opsr0.t |
|
|
Assertion |
opsr0 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
opsr0.s |
|
2 |
|
opsr0.o |
|
3 |
|
opsr0.t |
|
4 |
|
eqidd |
|
5 |
1 2 3
|
opsrbas |
|
6 |
1 2 3
|
opsrplusg |
|
7 |
6
|
oveqdr |
|
8 |
4 5 7
|
grpidpropd |
|