Metamath Proof Explorer


Theorem opsr0

Description: Zero in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses opsr0.s S=ImPwSerR
opsr0.o O=IordPwSerRT
opsr0.t φTI×I
Assertion opsr0 φ0S=0O

Proof

Step Hyp Ref Expression
1 opsr0.s S=ImPwSerR
2 opsr0.o O=IordPwSerRT
3 opsr0.t φTI×I
4 eqidd φBaseS=BaseS
5 1 2 3 opsrbas φBaseS=BaseO
6 1 2 3 opsrplusg φ+S=+O
7 6 oveqdr φxBaseSyBaseSx+Sy=x+Oy
8 4 5 7 grpidpropd φ0S=0O