Metamath Proof Explorer


Theorem opsr1

Description: One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses opsr0.s S = I mPwSer R
opsr0.o O = I ordPwSer R T
opsr0.t φ T I × I
Assertion opsr1 φ 1 S = 1 O

Proof

Step Hyp Ref Expression
1 opsr0.s S = I mPwSer R
2 opsr0.o O = I ordPwSer R T
3 opsr0.t φ T I × I
4 eqidd φ Base S = Base S
5 1 2 3 opsrbas φ Base S = Base O
6 1 2 3 opsrmulr φ S = O
7 6 oveqdr φ x Base S y Base S x S y = x O y
8 4 5 7 rngidpropd φ 1 S = 1 O