Description: One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opsr0.s | ||
opsr0.o | |||
opsr0.t | |||
Assertion | opsr1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsr0.s | ||
2 | opsr0.o | ||
3 | opsr0.t | ||
4 | eqidd | ||
5 | 1 2 3 | opsrbas | |
6 | 1 2 3 | opsrmulr | |
7 | 6 | oveqdr | |
8 | 4 5 7 | rngidpropd |