Metamath Proof Explorer


Theorem opsrassa

Description: The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses opsrcrng.o O = I ordPwSer R T
opsrcrng.i φ I V
opsrcrng.r φ R CRing
opsrcrng.t φ T I × I
Assertion opsrassa φ O AssAlg

Proof

Step Hyp Ref Expression
1 opsrcrng.o O = I ordPwSer R T
2 opsrcrng.i φ I V
3 opsrcrng.r φ R CRing
4 opsrcrng.t φ T I × I
5 eqid I mPwSer R = I mPwSer R
6 5 2 3 psrassa φ I mPwSer R AssAlg
7 eqidd φ Base I mPwSer R = Base I mPwSer R
8 5 1 4 opsrbas φ Base I mPwSer R = Base O
9 5 1 4 opsrplusg φ + I mPwSer R = + O
10 9 oveqdr φ x Base I mPwSer R y Base I mPwSer R x + I mPwSer R y = x + O y
11 5 1 4 opsrmulr φ I mPwSer R = O
12 11 oveqdr φ x Base I mPwSer R y Base I mPwSer R x I mPwSer R y = x O y
13 5 2 3 psrsca φ R = Scalar I mPwSer R
14 5 1 4 2 3 opsrsca φ R = Scalar O
15 eqid Base R = Base R
16 5 1 4 opsrvsca φ I mPwSer R = O
17 16 oveqdr φ x Base R y Base I mPwSer R x I mPwSer R y = x O y
18 7 8 10 12 13 14 15 17 assapropd φ I mPwSer R AssAlg O AssAlg
19 6 18 mpbid φ O AssAlg