Metamath Proof Explorer


Theorem opsrcrng

Description: The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses opsrcrng.o O = I ordPwSer R T
opsrcrng.i φ I V
opsrcrng.r φ R CRing
opsrcrng.t φ T I × I
Assertion opsrcrng φ O CRing

Proof

Step Hyp Ref Expression
1 opsrcrng.o O = I ordPwSer R T
2 opsrcrng.i φ I V
3 opsrcrng.r φ R CRing
4 opsrcrng.t φ T I × I
5 eqid I mPwSer R = I mPwSer R
6 5 2 3 psrcrng φ I mPwSer R CRing
7 eqidd φ Base I mPwSer R = Base I mPwSer R
8 5 1 4 opsrbas φ Base I mPwSer R = Base O
9 5 1 4 opsrplusg φ + I mPwSer R = + O
10 9 oveqdr φ x Base I mPwSer R y Base I mPwSer R x + I mPwSer R y = x + O y
11 5 1 4 opsrmulr φ I mPwSer R = O
12 11 oveqdr φ x Base I mPwSer R y Base I mPwSer R x I mPwSer R y = x O y
13 7 8 10 12 crngpropd φ I mPwSer R CRing O CRing
14 6 13 mpbid φ O CRing