Metamath Proof Explorer


Theorem opswap

Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion opswap A B -1 = B A

Proof

Step Hyp Ref Expression
1 cnvsng A V B V A B -1 = B A
2 1 unieqd A V B V A B -1 = B A
3 opex B A V
4 3 unisn B A = B A
5 2 4 eqtrdi A V B V A B -1 = B A
6 uni0 =
7 opprc ¬ A V B V A B =
8 7 sneqd ¬ A V B V A B =
9 8 cnveqd ¬ A V B V A B -1 = -1
10 cnvsn0 -1 =
11 9 10 eqtrdi ¬ A V B V A B -1 =
12 11 unieqd ¬ A V B V A B -1 =
13 ancom A V B V B V A V
14 opprc ¬ B V A V B A =
15 13 14 sylnbi ¬ A V B V B A =
16 6 12 15 3eqtr4a ¬ A V B V A B -1 = B A
17 5 16 pm2.61i A B -1 = B A