Metamath Proof Explorer


Theorem opth1

Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opth1.1 A V
opth1.2 B V
Assertion opth1 A B = C D A = C

Proof

Step Hyp Ref Expression
1 opth1.1 A V
2 opth1.2 B V
3 1 2 opi1 A A B
4 id A B = C D A B = C D
5 3 4 eleqtrid A B = C D A C D
6 1 sneqr A = C A = C
7 6 a1i A C D A = C A = C
8 oprcl A C D C V D V
9 8 simpld A C D C V
10 prid1g C V C C D
11 9 10 syl A C D C C D
12 eleq2 A = C D C A C C D
13 11 12 syl5ibrcom A C D A = C D C A
14 elsni C A C = A
15 14 eqcomd C A A = C
16 13 15 syl6 A C D A = C D A = C
17 id A C D A C D
18 dfopg C V D V C D = C C D
19 8 18 syl A C D C D = C C D
20 17 19 eleqtrd A C D A C C D
21 elpri A C C D A = C A = C D
22 20 21 syl A C D A = C A = C D
23 7 16 22 mpjaod A C D A = C
24 5 23 syl A B = C D A = C