Metamath Proof Explorer


Theorem opthg2

Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opthg2 C V D W A B = C D A = C B = D

Proof

Step Hyp Ref Expression
1 opthg C V D W C D = A B C = A D = B
2 eqcom A B = C D C D = A B
3 eqcom A = C C = A
4 eqcom B = D D = B
5 3 4 anbi12i A = C B = D C = A D = B
6 1 2 5 3bitr4g C V D W A B = C D A = C B = D