Metamath Proof Explorer


Theorem opthhausdorff

Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: <. A , B >._H = { { A , O } , { B , T } } . Hausdorff used 1 and 2 instead of O and T , but actually, any two different fixed sets will do (e.g., O = (/) and T = { (/) } , see 0nep0 ). Furthermore, Hausdorff demanded that O and T are both different from A as well as B , which is actually not necessary in full extent ( A =/= T is not required). This definition is meaningful only for classes A and B that exist as sets (i.e., are not proper classes): If A and C were different proper classes ( A =/= C ), then { { A , O } , { B , T } } = { { C , O } , { D , T } <-> { { O } , { B , T } } = { { O } , { D , T } is true if B = D , but ( A = C /\ B = D ) would be false. See df-op for other ordered pair definitions. (Contributed by AV, 14-Jun-2022)

Ref Expression
Hypotheses opthhausdorff.a A V
opthhausdorff.b B V
opthhausdorff.o A O
opthhausdorff.n B O
opthhausdorff.t B T
opthhausdorff.1 O V
opthhausdorff.2 T V
opthhausdorff.3 O T
Assertion opthhausdorff A O B T = C O D T A = C B = D

Proof

Step Hyp Ref Expression
1 opthhausdorff.a A V
2 opthhausdorff.b B V
3 opthhausdorff.o A O
4 opthhausdorff.n B O
5 opthhausdorff.t B T
6 opthhausdorff.1 O V
7 opthhausdorff.2 T V
8 opthhausdorff.3 O T
9 prex A O V
10 prex B T V
11 1 6 pm3.2i A V O V
12 2 7 pm3.2i B V T V
13 11 12 pm3.2i A V O V B V T V
14 4 necomi O B
15 14 8 pm3.2i O B O T
16 15 olci A B A T O B O T
17 prneimg A V O V B V T V A B A T O B O T A O B T
18 13 16 17 mp2 A O B T
19 preq12nebg A O V B T V A O B T A O B T = C O D T A O = C O B T = D T A O = D T B T = C O
20 9 10 18 19 mp3an A O B T = C O D T A O = C O B T = D T A O = D T B T = C O
21 preq12nebg A V O V A O A O = C O A = C O = O A = O O = C
22 1 6 3 21 mp3an A O = C O A = C O = O A = O O = C
23 preq12nebg B V T V B T B T = D T B = D T = T B = T T = D
24 2 7 5 23 mp3an B T = D T B = D T = T B = T T = D
25 simpl A = C O = O A = C
26 simpl B = D T = T B = D
27 25 26 anim12i A = C O = O B = D T = T A = C B = D
28 eqneqall A = O A O A = C B = D
29 3 28 mpi A = O A = C B = D
30 29 adantr A = O O = C A = C B = D
31 eqneqall B = T B T A = C B = D
32 5 31 mpi B = T A = C B = D
33 32 adantr B = T T = D A = C B = D
34 27 30 33 ccase2 A = C O = O A = O O = C B = D T = T B = T T = D A = C B = D
35 22 24 34 syl2anb A O = C O B T = D T A = C B = D
36 preq12nebg A V O V A O A O = D T A = D O = T A = T O = D
37 1 6 3 36 mp3an A O = D T A = D O = T A = T O = D
38 preq12nebg B V T V B T B T = C O B = C T = O B = O T = C
39 2 7 5 38 mp3an B T = C O B = C T = O B = O T = C
40 eqneqall O = T O T A = C B = D
41 8 40 mpi O = T A = C B = D
42 41 adantl A = D O = T A = C B = D
43 42 a1d A = D O = T B = C T = O B = O T = C A = C B = D
44 8 necomi T O
45 eqneqall T = O T O A = C B = D
46 44 45 mpi T = O A = C B = D
47 46 adantl B = C T = O A = C B = D
48 47 a1d B = C T = O A = T O = D A = C B = D
49 eqneqall B = O B O A = C B = D
50 4 49 mpi B = O A = C B = D
51 50 adantr B = O T = C A = C B = D
52 51 a1d B = O T = C A = T O = D A = C B = D
53 48 52 jaoi B = C T = O B = O T = C A = T O = D A = C B = D
54 53 com12 A = T O = D B = C T = O B = O T = C A = C B = D
55 43 54 jaoi A = D O = T A = T O = D B = C T = O B = O T = C A = C B = D
56 55 imp A = D O = T A = T O = D B = C T = O B = O T = C A = C B = D
57 37 39 56 syl2anb A O = D T B T = C O A = C B = D
58 35 57 jaoi A O = C O B T = D T A O = D T B T = C O A = C B = D
59 20 58 sylbi A O B T = C O D T A = C B = D
60 preq1 A = C A O = C O
61 60 adantr A = C B = D A O = C O
62 preq1 B = D B T = D T
63 62 adantl A = C B = D B T = D T
64 61 63 preq12d A = C B = D A O B T = C O D T
65 59 64 impbii A O B T = C O D T A = C B = D