| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opthhausdorff.a |
|
| 2 |
|
opthhausdorff.b |
|
| 3 |
|
opthhausdorff.o |
|
| 4 |
|
opthhausdorff.n |
|
| 5 |
|
opthhausdorff.t |
|
| 6 |
|
opthhausdorff.1 |
|
| 7 |
|
opthhausdorff.2 |
|
| 8 |
|
opthhausdorff.3 |
|
| 9 |
|
prex |
|
| 10 |
|
prex |
|
| 11 |
1 6
|
pm3.2i |
|
| 12 |
2 7
|
pm3.2i |
|
| 13 |
11 12
|
pm3.2i |
|
| 14 |
4
|
necomi |
|
| 15 |
14 8
|
pm3.2i |
|
| 16 |
15
|
olci |
|
| 17 |
|
prneimg |
|
| 18 |
13 16 17
|
mp2 |
|
| 19 |
|
preq12nebg |
|
| 20 |
9 10 18 19
|
mp3an |
|
| 21 |
|
preq12nebg |
|
| 22 |
1 6 3 21
|
mp3an |
|
| 23 |
|
preq12nebg |
|
| 24 |
2 7 5 23
|
mp3an |
|
| 25 |
|
simpl |
|
| 26 |
|
simpl |
|
| 27 |
25 26
|
anim12i |
|
| 28 |
|
eqneqall |
|
| 29 |
3 28
|
mpi |
|
| 30 |
29
|
adantr |
|
| 31 |
|
eqneqall |
|
| 32 |
5 31
|
mpi |
|
| 33 |
32
|
adantr |
|
| 34 |
27 30 33
|
ccase2 |
|
| 35 |
22 24 34
|
syl2anb |
|
| 36 |
|
preq12nebg |
|
| 37 |
1 6 3 36
|
mp3an |
|
| 38 |
|
preq12nebg |
|
| 39 |
2 7 5 38
|
mp3an |
|
| 40 |
|
eqneqall |
|
| 41 |
8 40
|
mpi |
|
| 42 |
41
|
adantl |
|
| 43 |
42
|
a1d |
|
| 44 |
8
|
necomi |
|
| 45 |
|
eqneqall |
|
| 46 |
44 45
|
mpi |
|
| 47 |
46
|
adantl |
|
| 48 |
47
|
a1d |
|
| 49 |
|
eqneqall |
|
| 50 |
4 49
|
mpi |
|
| 51 |
50
|
adantr |
|
| 52 |
51
|
a1d |
|
| 53 |
48 52
|
jaoi |
|
| 54 |
53
|
com12 |
|
| 55 |
43 54
|
jaoi |
|
| 56 |
55
|
imp |
|
| 57 |
37 39 56
|
syl2anb |
|
| 58 |
35 57
|
jaoi |
|
| 59 |
20 58
|
sylbi |
|
| 60 |
|
preq1 |
|
| 61 |
60
|
adantr |
|
| 62 |
|
preq1 |
|
| 63 |
62
|
adantl |
|
| 64 |
61 63
|
preq12d |
|
| 65 |
59 64
|
impbii |
|