Step |
Hyp |
Ref |
Expression |
1 |
|
opthhausdorff0.a |
|
2 |
|
opthhausdorff0.b |
|
3 |
|
opthhausdorff0.c |
|
4 |
|
opthhausdorff0.d |
|
5 |
|
opthhausdorff0.1 |
|
6 |
|
opthhausdorff0.2 |
|
7 |
|
opthhausdorff0.3 |
|
8 |
|
prex |
|
9 |
|
prex |
|
10 |
|
prex |
|
11 |
|
prex |
|
12 |
8 9 10 11
|
preq12b |
|
13 |
1 3
|
preqr1 |
|
14 |
2 4
|
preqr1 |
|
15 |
13 14
|
anim12i |
|
16 |
1 5 4 6
|
preq12b |
|
17 |
|
eqneqall |
|
18 |
7 17
|
mpi |
|
19 |
18
|
adantl |
|
20 |
2 6 3 5
|
preq12b |
|
21 |
|
eqneqall |
|
22 |
7 21
|
mpi |
|
23 |
22
|
eqcoms |
|
24 |
23
|
adantl |
|
25 |
|
simpl |
|
26 |
|
simpr |
|
27 |
25 26
|
sylan9eqr |
|
28 |
|
simpl |
|
29 |
|
simpr |
|
30 |
28 29
|
sylan9eq |
|
31 |
27 30
|
jca |
|
32 |
31
|
ex |
|
33 |
24 32
|
jaoi |
|
34 |
20 33
|
sylbi |
|
35 |
34
|
com12 |
|
36 |
19 35
|
jaoi |
|
37 |
16 36
|
sylbi |
|
38 |
37
|
imp |
|
39 |
15 38
|
jaoi |
|
40 |
12 39
|
sylbi |
|
41 |
|
preq1 |
|
42 |
41
|
adantr |
|
43 |
|
preq1 |
|
44 |
43
|
adantl |
|
45 |
42 44
|
preq12d |
|
46 |
40 45
|
impbii |
|