Metamath Proof Explorer


Theorem opthhausdorff0

Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: <. A , B >._H = { { A , O } , { B , T } } . Hausdorff used 1 and 2 instead of O and T , but actually, any two different fixed sets will do (e.g., O = (/) and T = { (/) } , see 0nep0 ). Furthermore, Hausdorff demanded that O and T are both different from A as well as B , which is actually not necessary if all involved classes exist as sets (i.e. are not proper classes), in contrast to opthhausdorff . See df-op for other ordered pair definitions. (Contributed by AV, 12-Jun-2022)

Ref Expression
Hypotheses opthhausdorff0.a A V
opthhausdorff0.b B V
opthhausdorff0.c C V
opthhausdorff0.d D V
opthhausdorff0.1 O V
opthhausdorff0.2 T V
opthhausdorff0.3 O T
Assertion opthhausdorff0 A O B T = C O D T A = C B = D

Proof

Step Hyp Ref Expression
1 opthhausdorff0.a A V
2 opthhausdorff0.b B V
3 opthhausdorff0.c C V
4 opthhausdorff0.d D V
5 opthhausdorff0.1 O V
6 opthhausdorff0.2 T V
7 opthhausdorff0.3 O T
8 prex A O V
9 prex B T V
10 prex C O V
11 prex D T V
12 8 9 10 11 preq12b A O B T = C O D T A O = C O B T = D T A O = D T B T = C O
13 1 3 preqr1 A O = C O A = C
14 2 4 preqr1 B T = D T B = D
15 13 14 anim12i A O = C O B T = D T A = C B = D
16 1 5 4 6 preq12b A O = D T A = D O = T A = T O = D
17 eqneqall O = T O T B T = C O A = C B = D
18 7 17 mpi O = T B T = C O A = C B = D
19 18 adantl A = D O = T B T = C O A = C B = D
20 2 6 3 5 preq12b B T = C O B = C T = O B = O T = C
21 eqneqall O = T O T A = T O = D A = C B = D
22 7 21 mpi O = T A = T O = D A = C B = D
23 22 eqcoms T = O A = T O = D A = C B = D
24 23 adantl B = C T = O A = T O = D A = C B = D
25 simpl A = T O = D A = T
26 simpr B = O T = C T = C
27 25 26 sylan9eqr B = O T = C A = T O = D A = C
28 simpl B = O T = C B = O
29 simpr A = T O = D O = D
30 28 29 sylan9eq B = O T = C A = T O = D B = D
31 27 30 jca B = O T = C A = T O = D A = C B = D
32 31 ex B = O T = C A = T O = D A = C B = D
33 24 32 jaoi B = C T = O B = O T = C A = T O = D A = C B = D
34 20 33 sylbi B T = C O A = T O = D A = C B = D
35 34 com12 A = T O = D B T = C O A = C B = D
36 19 35 jaoi A = D O = T A = T O = D B T = C O A = C B = D
37 16 36 sylbi A O = D T B T = C O A = C B = D
38 37 imp A O = D T B T = C O A = C B = D
39 15 38 jaoi A O = C O B T = D T A O = D T B T = C O A = C B = D
40 12 39 sylbi A O B T = C O D T A = C B = D
41 preq1 A = C A O = C O
42 41 adantr A = C B = D A O = C O
43 preq1 B = D B T = D T
44 43 adantl A = C B = D B T = D T
45 42 44 preq12d A = C B = D A O B T = C O D T
46 40 45 impbii A O B T = C O D T A = C B = D