| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opthhausdorff0.a |
|
| 2 |
|
opthhausdorff0.b |
|
| 3 |
|
opthhausdorff0.c |
|
| 4 |
|
opthhausdorff0.d |
|
| 5 |
|
opthhausdorff0.1 |
|
| 6 |
|
opthhausdorff0.2 |
|
| 7 |
|
opthhausdorff0.3 |
|
| 8 |
|
prex |
|
| 9 |
|
prex |
|
| 10 |
|
prex |
|
| 11 |
|
prex |
|
| 12 |
8 9 10 11
|
preq12b |
|
| 13 |
1 3
|
preqr1 |
|
| 14 |
2 4
|
preqr1 |
|
| 15 |
13 14
|
anim12i |
|
| 16 |
1 5 4 6
|
preq12b |
|
| 17 |
|
eqneqall |
|
| 18 |
7 17
|
mpi |
|
| 19 |
18
|
adantl |
|
| 20 |
2 6 3 5
|
preq12b |
|
| 21 |
|
eqneqall |
|
| 22 |
7 21
|
mpi |
|
| 23 |
22
|
eqcoms |
|
| 24 |
23
|
adantl |
|
| 25 |
|
simpl |
|
| 26 |
|
simpr |
|
| 27 |
25 26
|
sylan9eqr |
|
| 28 |
|
simpl |
|
| 29 |
|
simpr |
|
| 30 |
28 29
|
sylan9eq |
|
| 31 |
27 30
|
jca |
|
| 32 |
31
|
ex |
|
| 33 |
24 32
|
jaoi |
|
| 34 |
20 33
|
sylbi |
|
| 35 |
34
|
com12 |
|
| 36 |
19 35
|
jaoi |
|
| 37 |
16 36
|
sylbi |
|
| 38 |
37
|
imp |
|
| 39 |
15 38
|
jaoi |
|
| 40 |
12 39
|
sylbi |
|
| 41 |
|
preq1 |
|
| 42 |
41
|
adantr |
|
| 43 |
|
preq1 |
|
| 44 |
43
|
adantl |
|
| 45 |
42 44
|
preq12d |
|
| 46 |
40 45
|
impbii |
|