Metamath Proof Explorer


Theorem opthprc

Description: Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in Jech p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003)

Ref Expression
Assertion opthprc A × B × = C × D × A = C B = D

Proof

Step Hyp Ref Expression
1 eleq2 A × B × = C × D × x A × B × x C × D ×
2 0ex V
3 2 snid
4 opelxp x A × x A
5 3 4 mpbiran2 x A × x A
6 opelxp x B × x B
7 0nep0
8 2 elsn =
9 7 8 nemtbir ¬
10 9 bianfi x B
11 6 10 bitr4i x B ×
12 5 11 orbi12i x A × x B × x A
13 elun x A × B × x A × x B ×
14 9 biorfi x A x A
15 12 13 14 3bitr4ri x A x A × B ×
16 opelxp x C × x C
17 3 16 mpbiran2 x C × x C
18 opelxp x D × x D
19 9 bianfi x D
20 18 19 bitr4i x D ×
21 17 20 orbi12i x C × x D × x C
22 elun x C × D × x C × x D ×
23 9 biorfi x C x C
24 21 22 23 3bitr4ri x C x C × D ×
25 1 15 24 3bitr4g A × B × = C × D × x A x C
26 25 eqrdv A × B × = C × D × A = C
27 eleq2 A × B × = C × D × x A × B × x C × D ×
28 opelxp x A × x A
29 snex V
30 29 elsn =
31 eqcom = =
32 30 31 bitri =
33 7 32 nemtbir ¬
34 33 bianfi x A
35 28 34 bitr4i x A ×
36 29 snid
37 opelxp x B × x B
38 36 37 mpbiran2 x B × x B
39 35 38 orbi12i x A × x B × x B
40 elun x A × B × x A × x B ×
41 biorf ¬ x B x B
42 33 41 ax-mp x B x B
43 39 40 42 3bitr4ri x B x A × B ×
44 opelxp x C × x C
45 33 bianfi x C
46 44 45 bitr4i x C ×
47 opelxp x D × x D
48 36 47 mpbiran2 x D × x D
49 46 48 orbi12i x C × x D × x D
50 elun x C × D × x C × x D ×
51 biorf ¬ x D x D
52 33 51 ax-mp x D x D
53 49 50 52 3bitr4ri x D x C × D ×
54 27 43 53 3bitr4g A × B × = C × D × x B x D
55 54 eqrdv A × B × = C × D × B = D
56 26 55 jca A × B × = C × D × A = C B = D
57 xpeq1 A = C A × = C ×
58 xpeq1 B = D B × = D ×
59 uneq12 A × = C × B × = D × A × B × = C × D ×
60 57 58 59 syl2an A = C B = D A × B × = C × D ×
61 56 60 impbii A × B × = C × D × A = C B = D