Metamath Proof Explorer


Theorem opthprneg

Description: An unordered pair has the ordered pair property (compare opth ) under certain conditions. Variant of opthpr in closed form. (Contributed by AV, 13-Jun-2022)

Ref Expression
Assertion opthprneg A V B W A B A D A B = C D A = C B = D

Proof

Step Hyp Ref Expression
1 preq12bg A V B W C V D V A B = C D A = C B = D A = D B = C
2 1 adantlr A V B W A B A D C V D V A B = C D A = C B = D A = D B = C
3 idd A D A = C B = D A = C B = D
4 df-ne A D ¬ A = D
5 pm2.21 ¬ A = D A = D B = C A = C B = D
6 4 5 sylbi A D A = D B = C A = C B = D
7 6 impd A D A = D B = C A = C B = D
8 3 7 jaod A D A = C B = D A = D B = C A = C B = D
9 orc A = C B = D A = C B = D A = D B = C
10 8 9 impbid1 A D A = C B = D A = D B = C A = C B = D
11 10 adantl A B A D A = C B = D A = D B = C A = C B = D
12 11 ad2antlr A V B W A B A D C V D V A = C B = D A = D B = C A = C B = D
13 2 12 bitrd A V B W A B A D C V D V A B = C D A = C B = D
14 13 expcom C V D V A V B W A B A D A B = C D A = C B = D
15 ianor ¬ C V D V ¬ C V ¬ D V
16 simpl A B A D A B
17 16 anim2i A V B W A B A D A V B W A B
18 df-3an A V B W A B A V B W A B
19 17 18 sylibr A V B W A B A D A V B W A B
20 prneprprc A V B W A B ¬ C V A B C D
21 19 20 sylan A V B W A B A D ¬ C V A B C D
22 21 ancoms ¬ C V A V B W A B A D A B C D
23 eqneqall A B = C D A B C D A = C B = D
24 22 23 syl5com ¬ C V A V B W A B A D A B = C D A = C B = D
25 prneprprc A V B W A B ¬ D V A B D C
26 19 25 sylan A V B W A B A D ¬ D V A B D C
27 26 ancoms ¬ D V A V B W A B A D A B D C
28 prcom C D = D C
29 28 eqeq2i A B = C D A B = D C
30 eqneqall A B = D C A B D C A = C B = D
31 29 30 sylbi A B = C D A B D C A = C B = D
32 27 31 syl5com ¬ D V A V B W A B A D A B = C D A = C B = D
33 24 32 jaoian ¬ C V ¬ D V A V B W A B A D A B = C D A = C B = D
34 preq12 A = C B = D A B = C D
35 33 34 impbid1 ¬ C V ¬ D V A V B W A B A D A B = C D A = C B = D
36 35 ex ¬ C V ¬ D V A V B W A B A D A B = C D A = C B = D
37 15 36 sylbi ¬ C V D V A V B W A B A D A B = C D A = C B = D
38 14 37 pm2.61i A V B W A B A D A B = C D A = C B = D