Metamath Proof Explorer


Theorem opthreg

Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg (via the preleq step). See df-op for a description of other ordered pair representations. Exercise 34 of Enderton p. 207. (Contributed by NM, 16-Oct-1996) (Proof shortened by AV, 15-Jun-2022)

Ref Expression
Hypotheses opthreg.1 A V
opthreg.2 B V
opthreg.3 C V
opthreg.4 D V
Assertion opthreg A A B = C C D A = C B = D

Proof

Step Hyp Ref Expression
1 opthreg.1 A V
2 opthreg.2 B V
3 opthreg.3 C V
4 opthreg.4 D V
5 1 prid1 A A B
6 3 prid1 C C D
7 prex A B V
8 7 preleq A A B C C D A A B = C C D A = C A B = C D
9 5 6 8 mpanl12 A A B = C C D A = C A B = C D
10 preq1 A = C A B = C B
11 10 eqeq1d A = C A B = C D C B = C D
12 2 4 preqr2 C B = C D B = D
13 11 12 syl6bi A = C A B = C D B = D
14 13 imdistani A = C A B = C D A = C B = D
15 9 14 syl A A B = C C D A = C B = D
16 preq1 A = C A A B = C A B
17 16 adantr A = C B = D A A B = C A B
18 preq12 A = C B = D A B = C D
19 18 preq2d A = C B = D C A B = C C D
20 17 19 eqtrd A = C B = D A A B = C C D
21 15 20 impbii A A B = C C D A = C B = D