Metamath Proof Explorer


Theorem opthwiener

Description: Justification theorem for the ordered pair definition in Norbert Wiener, A simplification of the logic of relations, Proceedings of the Cambridge Philosophical Society, 1914, vol. 17, pp.387-390. It is also shown as a definition in Enderton p. 36 and as Exercise 4.8(b) of Mendelson p. 230. It is meaningful only for classes that exist as sets (i.e., are not proper classes). See df-op for other ordered pair definitions. (Contributed by NM, 28-Sep-2003)

Ref Expression
Hypotheses opthw.1 A V
opthw.2 B V
Assertion opthwiener A B = C D A = C B = D

Proof

Step Hyp Ref Expression
1 opthw.1 A V
2 opthw.2 B V
3 id A B = C D A B = C D
4 snex B V
5 4 prid2 B A B
6 eleq2 A B = C D B A B B C D
7 5 6 mpbii A B = C D B C D
8 4 elpr B C D B = C B = D
9 7 8 sylib A B = C D B = C B = D
10 0ex V
11 10 prid2 C
12 2 snnz B
13 10 elsn B = B
14 eqcom = B B =
15 13 14 bitri B B =
16 12 15 nemtbir ¬ B
17 nelneq2 C ¬ B ¬ C = B
18 11 16 17 mp2an ¬ C = B
19 eqcom C = B B = C
20 18 19 mtbi ¬ B = C
21 biorf ¬ B = C B = D B = C B = D
22 20 21 ax-mp B = D B = C B = D
23 9 22 sylibr A B = C D B = D
24 23 preq2d A B = C D C B = C D
25 3 24 eqtr4d A B = C D A B = C B
26 prex A V
27 prex C V
28 26 27 preqr1 A B = C B A = C
29 25 28 syl A B = C D A = C
30 snex A V
31 snex C V
32 30 31 preqr1 A = C A = C
33 29 32 syl A B = C D A = C
34 1 sneqr A = C A = C
35 33 34 syl A B = C D A = C
36 snex B V
37 36 sneqr B = D B = D
38 23 37 syl A B = C D B = D
39 2 sneqr B = D B = D
40 38 39 syl A B = C D B = D
41 35 40 jca A B = C D A = C B = D
42 sneq A = C A = C
43 42 preq1d A = C A = C
44 43 preq1d A = C A B = C B
45 sneq B = D B = D
46 sneq B = D B = D
47 45 46 syl B = D B = D
48 47 preq2d B = D C B = C D
49 44 48 sylan9eq A = C B = D A B = C D
50 41 49 impbii A B = C D A = C B = D