Metamath Proof Explorer


Theorem optocl

Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995)

Ref Expression
Hypotheses optocl.1 D = B × C
optocl.2 x y = A φ ψ
optocl.3 x B y C φ
Assertion optocl A D ψ

Proof

Step Hyp Ref Expression
1 optocl.1 D = B × C
2 optocl.2 x y = A φ ψ
3 optocl.3 x B y C φ
4 elxp3 A B × C x y x y = A x y B × C
5 opelxp x y B × C x B y C
6 5 3 sylbi x y B × C φ
7 6 2 syl5ib x y = A x y B × C ψ
8 7 imp x y = A x y B × C ψ
9 8 exlimivv x y x y = A x y B × C ψ
10 4 9 sylbi A B × C ψ
11 10 1 eleq2s A D ψ