Metamath Proof Explorer


Theorem opvtxfv

Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020)

Ref Expression
Assertion opvtxfv V X E Y Vtx V E = V

Proof

Step Hyp Ref Expression
1 opelvvg V X E Y V E V × V
2 opvtxval V E V × V Vtx V E = 1 st V E
3 1 2 syl V X E Y Vtx V E = 1 st V E
4 op1stg V X E Y 1 st V E = V
5 3 4 eqtrd V X E Y Vtx V E = V