Metamath Proof Explorer


Theorem opvtxfvi

Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021)

Ref Expression
Hypotheses opvtxfvi.v V V
opvtxfvi.e E V
Assertion opvtxfvi Vtx V E = V

Proof

Step Hyp Ref Expression
1 opvtxfvi.v V V
2 opvtxfvi.e E V
3 opvtxfv V V E V Vtx V E = V
4 1 2 3 mp2an Vtx V E = V