Metamath Proof Explorer


Theorem opwo0id

Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021)

Ref Expression
Assertion opwo0id X Y = X Y

Proof

Step Hyp Ref Expression
1 0nelop ¬ X Y
2 disjsn X Y = ¬ X Y
3 1 2 mpbir X Y =
4 disjdif2 X Y = X Y = X Y
5 3 4 ax-mp X Y = X Y
6 5 eqcomi X Y = X Y