Metamath Proof Explorer


Theorem orbstaval

Description: Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses gasta.1 X = Base G
gasta.2 H = u X | u ˙ A = A
orbsta.r ˙ = G ~ QG H
orbsta.f F = ran k X k ˙ k ˙ A
Assertion orbstaval ˙ G GrpAct Y A Y B X F B ˙ = B ˙ A

Proof

Step Hyp Ref Expression
1 gasta.1 X = Base G
2 gasta.2 H = u X | u ˙ A = A
3 orbsta.r ˙ = G ~ QG H
4 orbsta.f F = ran k X k ˙ k ˙ A
5 ovexd ˙ G GrpAct Y A Y k X k ˙ A V
6 1 2 gastacl ˙ G GrpAct Y A Y H SubGrp G
7 1 3 eqger H SubGrp G ˙ Er X
8 6 7 syl ˙ G GrpAct Y A Y ˙ Er X
9 1 fvexi X V
10 9 a1i ˙ G GrpAct Y A Y X V
11 oveq1 k = B k ˙ A = B ˙ A
12 1 2 3 4 orbstafun ˙ G GrpAct Y A Y Fun F
13 4 5 8 10 11 12 qliftval ˙ G GrpAct Y A Y B X F B ˙ = B ˙ A