Metamath Proof Explorer


Theorem ord0eln0

Description: A nonempty ordinal contains the empty set. (Contributed by NM, 25-Nov-1995)

Ref Expression
Assertion ord0eln0 Ord A A A

Proof

Step Hyp Ref Expression
1 ne0i A A
2 ord0 Ord
3 noel ¬ A
4 ordtri2 Ord A Ord A ¬ A = A
5 4 con2bid Ord A Ord A = A ¬ A
6 3 5 mpbiri Ord A Ord A = A
7 2 6 mpan2 Ord A A = A
8 neor A = A A A
9 7 8 sylib Ord A A A
10 1 9 impbid2 Ord A A A