Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
ord0eln0
Next ⟩
on0eln0
Metamath Proof Explorer
Ascii
Unicode
Theorem
ord0eln0
Description:
A nonempty ordinal contains the empty set.
(Contributed by
NM
, 25-Nov-1995)
Ref
Expression
Assertion
ord0eln0
⊢
Ord
⁡
A
→
∅
∈
A
↔
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
ne0i
⊢
∅
∈
A
→
A
≠
∅
2
ord0
⊢
Ord
⁡
∅
3
noel
⊢
¬
A
∈
∅
4
ordtri2
⊢
Ord
⁡
A
∧
Ord
⁡
∅
→
A
∈
∅
↔
¬
A
=
∅
∨
∅
∈
A
5
4
con2bid
⊢
Ord
⁡
A
∧
Ord
⁡
∅
→
A
=
∅
∨
∅
∈
A
↔
¬
A
∈
∅
6
3
5
mpbiri
⊢
Ord
⁡
A
∧
Ord
⁡
∅
→
A
=
∅
∨
∅
∈
A
7
2
6
mpan2
⊢
Ord
⁡
A
→
A
=
∅
∨
∅
∈
A
8
neor
⊢
A
=
∅
∨
∅
∈
A
↔
A
≠
∅
→
∅
∈
A
9
7
8
sylib
⊢
Ord
⁡
A
→
A
≠
∅
→
∅
∈
A
10
1
9
impbid2
⊢
Ord
⁡
A
→
∅
∈
A
↔
A
≠
∅