Metamath Proof Explorer


Theorem ord1eln01

Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion ord1eln01 Ord A 1 𝑜 A A A 1 𝑜

Proof

Step Hyp Ref Expression
1 ne0i 1 𝑜 A A
2 1on 1 𝑜 On
3 2 onirri ¬ 1 𝑜 1 𝑜
4 eleq2 A = 1 𝑜 1 𝑜 A 1 𝑜 1 𝑜
5 3 4 mtbiri A = 1 𝑜 ¬ 1 𝑜 A
6 5 necon2ai 1 𝑜 A A 1 𝑜
7 1 6 jca 1 𝑜 A A A 1 𝑜
8 el1o A 1 𝑜 A =
9 8 biimpi A 1 𝑜 A =
10 9 necon3ai A ¬ A 1 𝑜
11 nesym A 1 𝑜 ¬ 1 𝑜 = A
12 11 biimpi A 1 𝑜 ¬ 1 𝑜 = A
13 10 12 anim12ci A A 1 𝑜 ¬ 1 𝑜 = A ¬ A 1 𝑜
14 pm4.56 ¬ 1 𝑜 = A ¬ A 1 𝑜 ¬ 1 𝑜 = A A 1 𝑜
15 13 14 sylib A A 1 𝑜 ¬ 1 𝑜 = A A 1 𝑜
16 2 onordi Ord 1 𝑜
17 ordtri2 Ord 1 𝑜 Ord A 1 𝑜 A ¬ 1 𝑜 = A A 1 𝑜
18 16 17 mpan Ord A 1 𝑜 A ¬ 1 𝑜 = A A 1 𝑜
19 15 18 imbitrrid Ord A A A 1 𝑜 1 𝑜 A
20 7 19 impbid2 Ord A 1 𝑜 A A A 1 𝑜