Metamath Proof Explorer


Theorem ord3ex

Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un . (Contributed by NM, 2-May-2009)

Ref Expression
Assertion ord3ex V

Proof

Step Hyp Ref Expression
1 df-tp =
2 pwpr 𝒫 =
3 pp0ex V
4 3 pwex 𝒫 V
5 2 4 eqeltrri V
6 snsspr2
7 unss2
8 6 7 ax-mp
9 5 8 ssexi V
10 1 9 eqeltri V