Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
orddif
Next ⟩
orduniss
Metamath Proof Explorer
Ascii
Unicode
Theorem
orddif
Description:
Ordinal derived from its successor.
(Contributed by
NM
, 20-May-1998)
Ref
Expression
Assertion
orddif
⊢
Ord
⁡
A
→
A
=
suc
⁡
A
∖
A
Proof
Step
Hyp
Ref
Expression
1
orddisj
⊢
Ord
⁡
A
→
A
∩
A
=
∅
2
disj3
⊢
A
∩
A
=
∅
↔
A
=
A
∖
A
3
df-suc
⊢
suc
⁡
A
=
A
∪
A
4
3
difeq1i
⊢
suc
⁡
A
∖
A
=
A
∪
A
∖
A
5
difun2
⊢
A
∪
A
∖
A
=
A
∖
A
6
4
5
eqtri
⊢
suc
⁡
A
∖
A
=
A
∖
A
7
6
eqeq2i
⊢
A
=
suc
⁡
A
∖
A
↔
A
=
A
∖
A
8
2
7
bitr4i
⊢
A
∩
A
=
∅
↔
A
=
suc
⁡
A
∖
A
9
1
8
sylib
⊢
Ord
⁡
A
→
A
=
suc
⁡
A
∖
A