Metamath Proof Explorer


Theorem orddif

Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998)

Ref Expression
Assertion orddif Ord A A = suc A A

Proof

Step Hyp Ref Expression
1 orddisj Ord A A A =
2 disj3 A A = A = A A
3 df-suc suc A = A A
4 3 difeq1i suc A A = A A A
5 difun2 A A A = A A
6 4 5 eqtri suc A A = A A
7 6 eqeq2i A = suc A A A = A A
8 2 7 bitr4i A A = A = suc A A
9 1 8 sylib Ord A A = suc A A