Metamath Proof Explorer


Theorem ordelinel

Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017) (Proof shortened by JJ, 24-Sep-2021)

Ref Expression
Assertion ordelinel Ord A Ord B Ord C A B C A C B C

Proof

Step Hyp Ref Expression
1 ordtri2or3 Ord A Ord B A = A B B = A B
2 1 3adant3 Ord A Ord B Ord C A = A B B = A B
3 eleq1a A B C A = A B A C
4 eleq1a A B C B = A B B C
5 3 4 orim12d A B C A = A B B = A B A C B C
6 2 5 syl5com Ord A Ord B Ord C A B C A C B C
7 ordin Ord A Ord B Ord A B
8 inss1 A B A
9 ordtr2 Ord A B Ord C A B A A C A B C
10 8 9 mpani Ord A B Ord C A C A B C
11 inss2 A B B
12 ordtr2 Ord A B Ord C A B B B C A B C
13 11 12 mpani Ord A B Ord C B C A B C
14 10 13 jaod Ord A B Ord C A C B C A B C
15 7 14 stoic3 Ord A Ord B Ord C A C B C A B C
16 6 15 impbid Ord A Ord B Ord C A B C A C B C