Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
ordelon
Next ⟩
onelon
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordelon
Description:
An element of an ordinal class is an ordinal number.
(Contributed by
NM
, 26-Oct-2003)
Ref
Expression
Assertion
ordelon
⊢
Ord
⁡
A
∧
B
∈
A
→
B
∈
On
Proof
Step
Hyp
Ref
Expression
1
ordelord
⊢
Ord
⁡
A
∧
B
∈
A
→
Ord
⁡
B
2
elong
⊢
B
∈
A
→
B
∈
On
↔
Ord
⁡
B
3
2
adantl
⊢
Ord
⁡
A
∧
B
∈
A
→
B
∈
On
↔
Ord
⁡
B
4
1
3
mpbird
⊢
Ord
⁡
A
∧
B
∈
A
→
B
∈
On