Metamath Proof Explorer


Theorem ordelordALT

Description: An element of an ordinal class is ordinal. Proposition 7.6 of TakeutiZaring p. 36. This is an alternate proof of ordelord using the Axiom of Regularity indirectly through dford2 . dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that _E Fr A because this is inferred by the Axiom of Regularity. ordelordALT is ordelordALTVD without virtual deductions and was automatically derived from ordelordALTVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ordelordALT Ord A B A Ord B

Proof

Step Hyp Ref Expression
1 ordtr Ord A Tr A
2 1 adantr Ord A B A Tr A
3 dford2 Ord A Tr A x A y A x y x = y y x
4 3 simprbi Ord A x A y A x y x = y y x
5 4 adantr Ord A B A x A y A x y x = y y x
6 3orcomb x y x = y y x x y y x x = y
7 6 2ralbii x A y A x y x = y y x x A y A x y y x x = y
8 5 7 sylib Ord A B A x A y A x y y x x = y
9 simpr Ord A B A B A
10 tratrb Tr A x A y A x y y x x = y B A Tr B
11 2 8 9 10 syl3anc Ord A B A Tr B
12 trss Tr A B A B A
13 2 9 12 sylc Ord A B A B A
14 ssralv2 B A B A x A y A x y x = y y x x B y B x y x = y y x
15 14 ex B A B A x A y A x y x = y y x x B y B x y x = y y x
16 13 13 5 15 syl3c Ord A B A x B y B x y x = y y x
17 dford2 Ord B Tr B x B y B x y x = y y x
18 11 16 17 sylanbrc Ord A B A Ord B