Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
ordelss
Next ⟩
trssord
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordelss
Description:
An element of an ordinal class is a subset of it.
(Contributed by
NM
, 30-May-1994)
Ref
Expression
Assertion
ordelss
⊢
Ord
⁡
A
∧
B
∈
A
→
B
⊆
A
Proof
Step
Hyp
Ref
Expression
1
ordtr
⊢
Ord
⁡
A
→
Tr
⁡
A
2
trss
⊢
Tr
⁡
A
→
B
∈
A
→
B
⊆
A
3
2
imp
⊢
Tr
⁡
A
∧
B
∈
A
→
B
⊆
A
4
1
3
sylan
⊢
Ord
⁡
A
∧
B
∈
A
→
B
⊆
A