Metamath Proof Explorer


Theorem ordelssne

Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of TakeutiZaring p. 37. (Contributed by NM, 25-Nov-1995)

Ref Expression
Assertion ordelssne Ord A Ord B A B A B A B

Proof

Step Hyp Ref Expression
1 ordtr Ord A Tr A
2 tz7.7 Ord B Tr A A B A B A B
3 1 2 sylan2 Ord B Ord A A B A B A B
4 3 ancoms Ord A Ord B A B A B A B