Metamath Proof Explorer


Theorem ordelsuc

Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 29-Nov-2003)

Ref Expression
Assertion ordelsuc A C Ord B A B suc A B

Proof

Step Hyp Ref Expression
1 ordsucss Ord B A B suc A B
2 1 adantl A C Ord B A B suc A B
3 sucssel A C suc A B A B
4 3 adantr A C Ord B suc A B A B
5 2 4 impbid A C Ord B A B suc A B