Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
ordeq
Next ⟩
elong
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordeq
Description:
Equality theorem for the ordinal predicate.
(Contributed by
NM
, 17-Sep-1993)
Ref
Expression
Assertion
ordeq
⊢
A
=
B
→
Ord
⁡
A
↔
Ord
⁡
B
Proof
Step
Hyp
Ref
Expression
1
treq
⊢
A
=
B
→
Tr
⁡
A
↔
Tr
⁡
B
2
weeq2
⊢
A
=
B
→
E
We
A
↔
E
We
B
3
1
2
anbi12d
⊢
A
=
B
→
Tr
⁡
A
∧
E
We
A
↔
Tr
⁡
B
∧
E
We
B
4
df-ord
⊢
Ord
⁡
A
↔
Tr
⁡
A
∧
E
We
A
5
df-ord
⊢
Ord
⁡
B
↔
Tr
⁡
B
∧
E
We
B
6
3
4
5
3bitr4g
⊢
A
=
B
→
Ord
⁡
A
↔
Ord
⁡
B