Metamath Proof Explorer


Theorem ordeq

Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion ordeq A = B Ord A Ord B

Proof

Step Hyp Ref Expression
1 treq A = B Tr A Tr B
2 weeq2 A = B E We A E We B
3 1 2 anbi12d A = B Tr A E We A Tr B E We B
4 df-ord Ord A Tr A E We A
5 df-ord Ord B Tr B E We B
6 3 4 5 3bitr4g A = B Ord A Ord B