Metamath Proof Explorer


Theorem ordgt0ge1

Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion ordgt0ge1 Ord A A 1 𝑜 A

Proof

Step Hyp Ref Expression
1 0elon On
2 ordelsuc On Ord A A suc A
3 1 2 mpan Ord A A suc A
4 df-1o 1 𝑜 = suc
5 4 sseq1i 1 𝑜 A suc A
6 3 5 bitr4di Ord A A 1 𝑜 A